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Computational Co-Design of a Multiscale Plasma Application: A Process and Initial
Results

Joshua Payne, Dana Knoll, Allen McPherson, William Taitano, Luis Chacón, Guangye Chen, and Scott Pakin
Los Alamos National Laboratory

Abstract—As computer architectures become increasingly
heterogeneous the need for algorithms and applications that
can exploit these new architectures grows more pressing. This
paper demonstrates that co-designing a multi-architecture,
multi-scale, highly optimized framework with its associated
plasma-physics application can provide both portability across
CPUs and accelerators and high performance. Our framework
utilizes multiple abstraction layers in order to maximize code
reuse between architectures while providing low-level abstrac-
tions to incorporate architecture-specific optimizations such as
vectorization or hardware fused multiply-add. We describe a
co-design process used to enable a plasma physics application
to scale well to large systems while also improving on both the
accuracy and speed of the simulations. Optimized multi-core
results will be presented to demonstrate ability to isolate large
amounts of computational work with minimal communication.1

Keywords-particle-in-cell; co-design; implicit PIC; plasma
physics

I. INTRODUCTION

With the introduction of accelerators such as GPUs and
Intel Xeon Phi (MIC) co-processors, computer systems have
added multiple levels of parallelism. Multi-node, multi-core
systems have roughly three levels of parallelism: inter-
node, inter-core, and intra-core (SIMD). Each level has a
different amount of memory per parallel quanta and different
communication costs. Accelerators add at least one more
level of parallelism, and branch the hierarchy as illustrated
in Figure 1. These heterogeneous systems now have multiple
parallel branches, with each branch having its own parallel
hierarchy. Some branches, such as the multi-core branch,
have a few “heavy” threads, i.e. threads that require a lot
of overhead to create, but can handle a large amount of
work. Threads on the GPU are considered “light” in that
the overhead for spawning new threads is very low, but each
thread is expected to perform only a small portion of the total
work.

The tendency towards hierarchical architectures necessi-
tates the development of hierarchical algorithms that map
well to these systems. Multi-scale physics problems exhibit
a similar hierarchical nature, and therefore may be able to
naturally take advantage of both hierarchical architectures
and algorithms. Compounding these issues is the difficulty
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Figure 1. Multiple levels of parallelism in emerging heterogeneous
architectures.

of achieving both performance and portability across ar-
chitectures in the general case. Instead of solving these
issues for the general case, we propose a co-design process
to be used with specific applications that incorporate un-
derlying, application-specific, abstraction layers to achieve
both portability and performance. Our goal is to produce a
comprehensive co-design process that can be used to identify
applications, develop algorithms, map those algorithms to
existing architectures, and optimize emerging architectures
to better suit the needs of the science problems.

Essentially, applications and algorithms must adapt to-
gether to new architectures while programming models
and abstractions must adapt to new applications and algo-
rithms. A co-design effort seeks to achieve an optimized
interaction between applications, algorithms, programming
models, abstractions, and emerging architectures in order to
enable the exploration of new scientific problems. Compu-
tational co-design efforts, such as the Computational Co-
Design for Multi-Scale Application in the Natural Sciences
(CoCoMANS) project at LANL, encourage forming, or-
ganizing, and managing multi-disciplinary teams working
towards a common goal. The end-goal of our evolving
co-design process is to produce a paradigm shift in the
pursuit of multi-scale science simulations. This paradigm
shift comprises three aspects: 1) demonstrating an effective
use of hierarchical parallelism on emerging architectures,
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capabilities and architecture capabilities. The algorithm design is influenced by these two factors, and once an algorithm design has been completed it is
tested for both scientific and hardware mapping characteristics. The desired physics characteristics and algorithm design are iterated on based on these tests.
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2) achieving a significant new physics simulation capability
via enhanced model fidelity, increased numerical accuracy,
or both, and 3) running on multiple types of hardware
(GPUs vs. MIC vs. multi-core) with no physics or numerics
code changes [11]. The process being evolved, graphically
represented in Figure 2 involves an iteration between three
primary areas: algorithms, abstractions, and applications.

A. Numerical Algorithms and Solvers

Modern computer architectures are becoming increas-
ingly heterogeneous. New supercomputers, such as Titan
at ORNL, Tianhe-2 at NUDT, and Stampede at TACC,
can attribute a very large portion of their peak FLOPS to
accelerators such as GPUs and MIC co-processors. These
new architectures promise significant gains in both raw
performance and performance per watt. However, the de-
velopment of algorithms that can take full advantage of
these new systems has proven difficult. Algorithms tailored
for these heterogeneous systems must; 1) utilize very fine-
grained parallelism, 2) isolate a very large amount of work
on the accelerators, 3) minimize communication between
accelerators and the host system, 4) isolate a very large
amount of work on-node, and 5) maximize use of SIMD
and SIMT features.

The application outlined in this paper utilizes a particle-
based method that maps very well to the fine grained
parallelism utilized by accelerators such as GPUs and MIC
co-processors. However, cross-accelerator and accelerator-
host communication is very expensive, and these commu-
nication costs can become significant for problems that
involve disparate temporal and spatial scales. For such stiff
problems, scale-bridging acceleration techniques are utilized

in order to isolate work on the accelerators and minimize
communication.

Such scale-bridging algorithmic acceleration techniques
couple low-order (LO), coarse-grained models with high-
order (HO), fine-grained descriptions, in order to resolve
macroscopic effects based on microscopic behaviors. It pos-
sesses a hierarchical nature similar to that of emerging archi-
tectures by construction. High-order descriptions alone, such
as particle methods for kinetic problems [9], tend to have
a very high degree of isolated parallelism. However, these
associated algorithms often require frequent global com-
munication in order to ensure that nonlinear macroscopic
features are captured. The frequency of communications for
each nonlinear iteration can be significantly reduced by using
a LO model to aid in the resolution of the macroscopic
features.

Our insight therefore is to use a moment-based low-order
(LO)) method to accelerate the non-linear convergence of
a particle based high-order (HO) method. For the specific
example of interest in this document, the LO moment-based
method simply solves the discretized fluid equations (ob-
tained by a rigorous moment integration), coupled with the
HO Vlasov equation (using particles) and the Darwin (nor-
radiative) formulation of Maxwell’s equations. The coupled
HO-LO Darwin-PIC formulation is solved implicitly.

Our formulation/algorithmic choices are motivated by the
target problems and architectures. Implicit PIC was chosen
because it is free of the numerical stability constraints of
explicit PIC [2], it allows particle subcycling, and features
exact charge and energy conservation [5], [16]. We use a
Darwin formulation of Maxwell’s equations in order to avoid
radiative noise due to numerical light wave dispersion. As



a result of these choices, our approach features a unique
combination of algorithmic performance, mapping to archi-
tectures, and long-term accuracy. These methods will be
explained in more detail later in this document.

B. Computer Science and Hardware

In addition to the algorithmic challenges, heterogeneous
architectures present significant development challenges.
The different processing components of these architectures
can require substantially different data storage, data manage-
ment, and execution treatments. An example of this can be
seen in structures of arrays on GPUs vs. arrays of structures
on CPUs. Often, this leads developers to write multiple
versions of the same physics algorithms, in some cases
completely rewriting the application in order to run well
on different architectures.

This should not be the case, as often the underlying
physics (as well as much of the higher level numerical
methods) will be the same on all architectures. Language
extensions such as OpenCL [13] facilitate this process by
relying on the compiler to generate code that can run on
a large range of hardware. However, the compiler can not
automatically generate code optimized for multiple different
pieces of hardware from a single OpenCL kernel. Many
device-specific optimizations are based on maximizing cache
usage, ensuring that certain intrinsic operations are used, and
structuring an algorithm such that it maps well to a specific
architecture.

In order to get good code reuse, portability, and perfor-
mance, multiple layers of abstraction should be identified
such that hardware-specific data management and execution
control can be hidden from the physics developer. Low-
level compile-time controls, such as preprocessor statements,
can be combined with higher level programming language
concepts such as template meta-programming and virtual
classes to direct the compiler. Given the proper direction,
the compiler will generate multiple, optimized, versions of
the same physics operators for different sets of hardware.
Our contribution is an abstraction layer for a kinetic plasma
simulation application that utilizes an algorithmic structure
matched to the hardware structure by using a HO/LO
approach instead of retrofitting an existing algorithm.

C. Domain Science

Our plasma application area spans multiple spatial and
temporal scales, separated by several orders of magnitude,
as shown in Figure 3. In the plasma application, we are
solving Vlasov equations for ions and electrons along with
Maxwell’s equations for the electromagnetic fields [2]. The
Vlasov equation can have up to three spatial dimensions
(3D) and up to three velocity space dimensions (3V). These
multi-scale problems can be very difficult to solve on long
time and system scales. For instance, the computational com-
plexity of a typical plasma problem, a 2D island coalescence,
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scales roughly by as [11]:

RunTime ≈ O
( N Particles︷ ︸︸ ︷

500×
(
L

λD

)2

×

N time steps︷ ︸︸ ︷
(3× 104)

mi

me

)
(1)

where L is the system length, λD is the Debye length2,
mi and me are the ion and electron masses respectively. A
solution for this problem has been obtained with an explicit
algorithm by Karimabadi et. al. [10] that required 500 par-
ticles per cell on a mesh of 17920×8960 cells, and a much
reduced mass ratio mi/me = 25 (realistic mi/me = 1836).
Essentially this problem required on the order of 1016 (num-
ber of particles × number of time steps), total particle steps
with a system-wide communication required every 8× 1010

explicit particle time steps. As discussed earlier our proposed
algorithmic solution reduces the difficulty of solving these
multi-scale problems by breaking the problem into a coupled
HO/LO solution: a coarse (macroscopic LO) solution to
resolve large scale features and a fine (microscopic HO)
solution to deal with the small scale features. We developed
this solution using a unique co-design process.

D. Assembling the Co-Design Process

The co-design process itself is expected to evolve as
we work through a range of domain science problems, the
plasma physics application is the first. The basic process
we are evolving to create a multi-scale plasma physics
application, shown in Figure 2, begins with identification
of desired physics capabilities and architecture capabilities.
Algorithms are chosen and designed to best support these
two factors. A prototype-app is then used to implement
and validate the scientific characteristics of the concept
algorithm. This application is generally developed in a
higher-level language, such as MATLAB. Once the validity
of the algorithms has been proved, mini-apps are developed
to test the skeleton algorithm on different architectures.

2The Debye length is the scale over which mobile charge carriers in a
plasma screen out electric fields



During the development of these mini-apps, multiple micro-
benchmarks are used to rapidly test various design decisions
for optimizing the mini-apps. Once the simplified versions of
the algorithms have been thoroughly explored, the process
is repeated for more complex versions of the application.
This is a co-design iteration with lessons learned from the
previous iteration impacting the next iteration. Once the
target problem complexity has been reached, the lessons
learned from the optimized mini-apps and prototype-apps
are used to develop the final compact-app.

To support our co-design process, we are developing a
flexible framework for testing optimization strategies and
algorithms for multiple architectures and physics problems.
This framework will serve as the backbone for the compact-
app paradigm shift demonstration.

This paper will focus on the development of the plasma
application framework, and the optimization of its multi-
core component for both 1D1V and 2D3V problems3. To
begin, we review the Particle-in-Cell (PIC) algorithm, and
indicate how our PIC implementation differs from standard
PIC approaches.

II. THE APPLICATION AND ALGORITHM

Particle-in-Cell (PIC) algorithms are widely used to model
kinetic behaviors in plasmas. Standard PIC algorithms are
explicit, and employ a leap-frog time integration scheme [2].
Explicit PIC codes are straightforward to parallelize since
every particle can be integrated independently of the others.
The discrete particle nature of PIC codes makes them ideal
for use with fine grained parallelism accellerators such as
GPUs and MIC co-processors.

There has been significant effort in developing explicit
PIC codes for advanced architectures. VPIC [3], an explicit
PIC code used extensively at LANL, was successfully im-
plemented on the Roadrunner system, a hybrid AMD64 and
IBM PowerXCell 8i architecture [3]. GPU based explicit
PIC codes include SCEPTIC3DGPU [15], PIConGPU [4],
and OSIRIS [12].

While particle pushing in explicit methods maps well to
advanced, highly parallel architectures, there are significant
communication costs that are incurred every time step.
These communication costs include gathering the charge
and current tallies, and then scattering the updated field
information back to all nodes. In serial applications, these
communication costs are negligible compared to pushing the
particles. However, once the pushing performance increases
by several orders of magnitude, and the problem is spread
across thousands of nodes, communication costs become the
bottleneck. The key to maximizing hardware utilization is to
increase the amount of particle-push work per time step in
the service of numerical accuracy. We achieve this via a
consistent HO/LO moment-based implicit PIC method.

31D1V means only one spatial dimension and one velocity dimension
are used.
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Figure 4. Implicit PIC flowchart. Starting with an initial particle distribu-
tion, the LO Solver solves the field and moment equations. The solution to
the field equations are passed to the HO solver, which pushes the particles
multiple subcycles. Each particle uses a different subcycle length, ∆τ
for each subcycle. After a particle’s equations of motion have been fully
converged the subcycle averaged current is tallied, and in future codes
reinjections and collisions will be handled. Once the particle has been
pushed the full time step the density and stress tensor are tallied. After
all particles have been pushed the HO moments: ~J(pi,t+1/2), ρ(pi,t+1),
and S̄(pi,t+1) are sent to the LO solver for the next iteration.

A. Consistent Moment-Based Implicit PIC

Explicit PIC codes must resolve all space and time scales
for numerical stability [2]. Implicit PIC is a particle based
kinetic model wherein the particle’s equations of motion are
fully converged together with Maxwell’s equations. Consis-
tent Implicit PIC removes the numerical stability constraints
that confine explicit methods to very small time steps and
fine meshes [5], [16]. This is a critical advantage for simu-
lating plasma phenomena that evolve on ion time and system
length scales. A basic outline of the HO/LO moment-based
implicit PIC algorithm with subcycled particle stepping can
be seen in Figure 4.

The method illustrated in figure 4 begins with the ini-
tialization of the particles and High-Order (HO) moments,
current ~J(pi,t+1/2), density ρ(pi,t+1), and stress tensor
S̄(pi,t+1). These HO moments are used to solve for the
initial field values and generate the initial Low-Order (LO)
moments. At this point the main time step, ∆t, loop begins.
Inside the time step loop, all particles are iterated over
and pushed within a subcycle loop using timesteps ∆τν ,
where ∆t =

∑
ν ∆τν . The subcycle loop begins with the

interpolation of the field values to the particle. These field
values are then used to estimate ∆τν for that subcycle step.
The particle’s equations of motion are then converged using
a nonlinear Picard method. Once a particle’s equations of
motion have been fully converged the particle’s contribu-
tion to the current density ~J is weighted and tallied by
~Ji+1/2 = ~Ji+1/2 + ∆τν

∆t ~v. After a particle has completed all
subcycles, the contributions to charge ρi+1 and stress tensor



S̄i+1 are tallied. When all particles have been pushed the
HO moments for the next time step; ~Ji+1/2, ρi+1, and S̄i+1,
are used to update the LO moments and solve for the field
values at the next time step.

Algorithm 1 Moment-Based Implicit PIC with subcycling
for t = 0→ tmax do

while resid > tol do // Outer Picard Loop
for all pi,0 ∈ Pt do // Particle Loop

while
∑

∆τν < ∆t do // Subcycle Loop
Interpolate ~Et+1/2, ~Bt+1/2 to pi,ν
Estimate ∆τν
Solve equations of motions: pi,ν → pi,ν+1

Tally ~J(pi,ν+1/2)
end while
Tally ρ(pi,t+1), S̄(pi,t+1)

end for
Calculate residual
~Et+1, ~Bt+1=LO( ~J(pi,t+1/2), ρ(pi,t+1), S̄(pi,t+1))

end while
end for

An important advantage of non-linearly coupling the
fluid and kinetic models lies in strict charge and energy
conservation theorems [5]. Charge conservation is achieved
through a specific discretization scheme and forcing par-
ticles to stop at cell boundaries for current accumulation.
Energy conservation depends on fully converging particles
and fields, and require a specific current accumulation to
the mesh and field scatter to the particles. These constraints
impart significant design challenges to the development of
optimized particle-orbit integration routines.

B. Benefits of Consistent Moment-Based Implicit PIC

Consistent HO/LO moment-based implicit PIC has several
architectural and algorithmic benefits. The first major benefit
is that the vast majority of the pushing work is isolated
at the processing unit level. This means that a very large
amount of work is done per byte communicated, be it inter-
node, accelerator-CPU, or multi-core communication. This
is a result of the ability of the moment-based PIC method
to take much larger time steps between field updates, on the
order of 10-100x explicit PIC time steps. The actual particle
orbit integration still takes place with smaller time step sizes,
but those are trivially parallel tasks.

In 1D and 2D we are employing a partial replication
approach, which replicates all of the moments and fields
on every node, but not the particles. The total inter-node
communication for this approach is contained within a
single MPI_allreduce() that is called after all particle
subcycles have been completed. This approach, combined
with the very large amount of on node work required to
push the particles, results in the minimal contribution of
communication to overall computation time. This effect can
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Figure 5. Multi-Node 1D1V Two Stream Instability Results.

be seen in Figure 5, which has been obtained with a 1D1V
electrostatic two-stream instability simulation on 32 nodes
with 16 cores per node. The top six bars represent the HO
solver effort while the bottom bar represents the LO solver
effort. On-node parallelization is done using OpenMP, while
inter-node parallelization is done using MPI. Essentially
communication costs are non-existent next to the pushing
costs.

The second major architectural benefit of this method is
the fact that it maps well to heterogeneous architectures.
Pushing particles is a trivially parallel task that is well suited
to GPUs and other accelerators, such as MIC. Since a very
large amount of work can be isolated on the accelerator,
the high latency and low bandwidth limits of the PCIe bus
are largely irrelevant. Additionally, since some problems
deal with multiple particle species, which require a varying
amount of work to push, different hardware can push differ-
ent species and numbers of particles in order to attain load
balancing. For example we push ions and a small number of
electrons on the CPUs and electrons only on the GPUs since
the electrons require a greater number of subcycles due to
lower mass.

In addition to the architectural benefits, as previously
stated, consistent implicit PIC offers substantial accuracy
benefits such as strict charge and energy conservation over
large time scales. Enforcing the conservation of these proper-
ties limits noise modes to only those that are both charge and
energy conserving, and removes uncertainty that can arise
from numerical heating and cooling. Cummins et. al. has
demonstrated that near energy-conserving implicit models
can substantially reduce noise in material simulations [7],
and we are currently working on demonstrating similar
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benefits in plasma physics problems. Both properties are
conserved roughly to floating point tolerance. Figures 6 and
7 demonstrate conservation of both properties over 1000
time steps, with a time step size of 10ω−1

pe (roughly 100,000
explicit time steps) for a 2D3V magnetic Island Coalescence
equilibrium problem. Energy conservation requires specific
discretizations for the field interpolations and moment tal-
lies. Charge conservation requires particles to stop at cell
faces and tally the half time current at the cell face [6].
Stopping at the cell face requires a specialized cell crossing
algorithm, which will be discussed in a future manuscript.

III. CO-DESIGN EFFORT

The plasma app has achieved significant progress in a
short amount of time in part due to previous experience in-
herited from previous projects [5], [6], [15]. These previous
experiences include 1D1V electrostatic implicit-particle-in-
cell codes implemented on both the CPU and GPU, detailed
in [5], [6], and a GPU implementation of the 3D3V explicit
particle-in-cell code SCEPTIC3D, detailed in [15].

The charge and energy conserving implicit PIC algorithm
was put forth by Chen and Chacón [5]. Taitano [16] coupled
this implicit PIC scheme with a moment-based acceleration
which allowed for effective nonlinear convergence within
a time-step without the use of the outer Newton-Krylov

solver in [5]. Both Chen and Taitano separately developed
prototype-apps to test the validity of the HO-LO moment
based, charge and energy conserving, implicit PIC algo-
rithm for 1D1V, electrostatic problems [5], [16]. Following
the physics demonstration, a 1D1V electrostatic mini-app
was developed to investigate the HO portion algorithm on
GPUs [6].

The current effort is focused on developing a flexible
parallel PIC framework, which incorporates multiple physics
problems, spanning different spatial and velocity dimen-
sionalities, and architecture specific implementations and
optimizations. This framework is essentially the foundation
for multiple prototype and mini apps and is designed such
that the major components are essentially plug and play.
A TRILINOS [8] based LO solver has been incorporated
into the framework and currently solves 1D1V and 1D3V
problems. Different mini-apps can be generated simply by
using different combinations of LO solvers, field storage and
access strategies, and particle data storage strategies.

A. PlasmaApp

PlasmaApp is a flexible multi-architecture implicit
particle-in-cell framework that handles problems of varying
spatial and velocity dimensionality. This PIC code differs
from all other PIC codes in that it is non-linearly implicit,
and is both charge and energy conserving.

The goals of the PlasmaApp framework are as follows:
• Only implement the physics once, for all architectures.
• Support multiple architectures, multi-core, GPU, MIC.
• Support multiple optimization paths for each architec-

ture.
• Parallelize across multiple nodes.
1) Physics Abstraction: The first guiding philosophy in

the development of this framework is the concept of a single
physics implementation. For each architecture the domain is
exactly the same, The specific instructions used to perform
that math, and the data management systems used to supply
the information to be operated on may be different, but at
some higher level, the operations performed by each device
should appear almost identical. This higher level is where
the physics should be implemented.

For the purposes of this framework, much of the common
physics is contained in the particle orbit integration. This
section of the framework is laid out in such a way that an
application scientist can immediately recognize the physics
being performed, but also in such a way that the compiler
can generate high performance architecture specific imple-
mentations. In C++ the primary mechanisms for telling the
compiler to generate different versions of the same code are
templates and preprocessor statements. The solution used in
this framework is a strongly templated particle-physics class,
that encapsulates the particle orbit integration.

An important consideration for this physics object is that
the compiler should generate different code for different



spatial and velocity dimensionalities, as well as electrostatic
vs electromagnetic models. This allows the framework to
choose the appropriate particle physics for the problem.

2) Operation Abstraction: Another consideration in de-
signing this physics object is that of the SIMD nature of
the target devices. For multi-core and MIC architectures the
vector processing is done in a 1 × N -wide vector, that is
one N-wide vector is processed per thread at a time. The
GPU handling is essentially the transpose, handling N × 1-
wide vectors per multi-processor, basically a 1-wide vector
per thread. This means that the physics object should be
templated such that it can be used as a structure of arrays or
an array of structures. An example of this object is shown
below:

template<int N,int nS,int nV,bool iEM>
class ParticleObjNT
{
private:
// position within cell range [0:1)
typevecN<typevecN<double,N>,nS> position;
// particle velocities
typevecN<typevecN<double,N>,nV> velocity;
// cell index
typevecN<typevecN<int,N>,nS> iposition;

};

This templated particle object can act as either an array of
structures for vectorization on CPU or MIC architectures,
or as a structure of arrays on GPUs. N is the number of
particles handled by the object, nS is the number of spatial
dimensions, and nV is the number of velocity dimensions.

Vectorization and device specific intrinsic operations are
hidden within the typevecN<T,N>object where T is the
data type, and N is the length of the vector. All of the relevant
mathematical operations are overloaded for this data type to
loop over all elements within the vector. This allows most
of the mathematical operations performed in the code to be
expressed in simple for-loops, which are easily vectorizeable
by the compiler.

Additionally, all of these operations can be inlined, and set
to architecture specific operations through the use of prepro-
cessor directives. An example of this operator overloading
is shown below:

template<typename T, const int N>
typevecN<T,N> __fmad(typevecN<T,N>& a,

typevecN<T,N>& b,
typevecN<T,N>& c)

{
typevecN<T,N> d;
for(int i=0;i<N;i++) {

#ifdef CUDA_CODE
d(i) = __fma_rn(a(i),b(i),c(i));

#else
d(i) = a(i) * b(i) + c(i);

#endif
}
return d;

}
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Figure 8. Single Node vectorization analysis.

Overloading operators in this manner enables the problem
to be laid out in such a way that the compiler can easily
understand the loops and vectorize them. Additionally it
allows for easy integration of hand vectorization. In order
to analyze the importance of vectorization we ran three
tests with differing levels of vectorization for both single
and double precision. These tests were performed on an
Intel Sandy Bridge CPU with support for 256-bit AVX
instructions. The results of these tests are shown in figure 8.

Cases (A) and (D) were run with a pseudo-vector length
of 1, with all compiler -O3 flags on, minus the compiler
vectorization. An interesting feature of these tests is that
the single precision performance is almost identical to the
double. This is due to the fact that the majority of floating-
point operations in the SSE instruction set have roughly
the same latency and throughput for both double and single
precision [1].

Cases (B) and (E) test the ability of the compiler to
vectorize the code. These tests were run with all -O3 flags on
and a pseudo-vector length of 32. It is interesting to note that
the compiler vectorization does well in most of the routines,
except for the cell-crossing and time step estimator. Here the
single precision version is faster than the double due to the
fact that twice the number of operations are performed for
the single versions compared to the double.

The last cases, (C) and (F), incorporate routines that were
hand vectorized using AVX intrinsics in addition to the
compiler vectorized code. The hand vectorized operators
were min, max, floor, signum, integer modulo, and
abs. This optimization had a significant effect on the cell-
crossing, current tally, and general math, but little impact on



the acceleration interpolation and time step estimation.
Overall, the effects of compiler vectorization and hand

vectorization resulted in roughly a 3x speedup for the single
precision case, and 2x for double precision for 256-bit wide
vectors. While a factor of 2x speed up is not particularly
impressive, it does demonstrate that we are able to achieve a
high degree of vectorization. We expect the performance gap
to grow further as CPU architectures move from high serial
performance to more parallel performance, i.e. wider vectors
such as those on Intel MIC and AVX2 enabled processors.

3) Optimization and Hardware Abstraction: The third
consideration concerns the flexibility to support different
data management strategies for different architectures and
optimizations. Our approach is to use virtual classes with
optimization and architecture specific instantiations. For the
purposes of this application, the data structures that will
require architecture specific implementations are the particle
information arrays, the field information, and how the mo-
ments are tallied. Fortunately, both CUDA and MIC support
virtual classes, although with some caveats for CUDA.

B. Analysis and Optimization Process

The PlasmaApp framework is designed with various levels
of abstraction in order to facilitate our analysis and optimiza-
tion process. For the purposes of the multi-core mini-app this
process is as follows:

1) Run performance benchmarks to determine most
costly routines.

2) Use tools to determine if the costs are math or memory
related.

3) Identify strategies for improving the performance of
costly routines.

4) Implement different optimization strategies in an eas-
ily reversible manner.

C. Process Example: Multi-core 2D3V Optimization

Before delving deeply into optimizing for advanced ar-
chitectures we first produced an optimized multi-core Xeon
version of the PlasmaApp framework. To this end, two
tools were employed: a high-performance in-code timer and
an LLVM-based profiler called Byfl [14]. Byfl is a tool
developed at LANL with the goal of helping application
developers understand code performance in a hardware-
independent way by instrumenting code in LLVM’s inter-
mediate representation.

1) Profiling Analysis: The first step in the optimization
and analysis process involves profiling the main components
of the code and determining the cost breakdown. This is
done using a high resolution, low overhead timer based
on the rdtsc instruction. Of course, this method is only
reliable when the core clock speed is kept constant. Mea-
surements of the relative error between the rdtsc instruction
and clock_gettime() were in the range of 10−6. These
timers wrap each of the main routines in the PlasmaApp
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Figure 9. Initial performance profiling of 2D3V problem, 7.17 × 108

subcycles.

code. The total runtime from each timer is then divided by
the total number of particle subcycles. The profiling results
for the 2D3V island coalescence equilibrium problem with
512,000 particles on a 32x32 mesh, on a machine with 2x
Intel Xeon E5-2687W 8-core CPUs at 3.1GHz are shown in
figure 9.

2) Byfl Analysis: The acceleration interpolation was pre-
viously identified as the most costly routine. Using the
Byfl [14] tool, we measure that each particle requires
roughly 2300 floating point operations per subcycle. The
acceleration interpolation alone contributes 1,500 flops per
subcycle, or about 64%. Specific, dominant, functions which
are being called numerous times per subcycle have been
identified. These include fabs(), fmin(), and the field
interpolation functions.

3) Possible Optimization Strategies: The main costs iden-
tified were related to memory operation efficiency in the
acceleration interpolation and the evaluation of various
mathematical operations. Based on this information, and
knowledge of the underlying algorithm, we can identify sev-
eral possible optimization strategies: 1) reduce the number
of floating point operations, 2) increase the number of bits
used per memory op.

First we can hand vectorize frequently evaluated math
functions that are not being taken care of by the compiler,
such as min, max, abs, floor, mod, and signum. This
will serve to speed up much of the general Picard math,
and a vectorized signum should speed up the cell-crossing
algorithm.

Second, we can consolidate the shape function evaluations
in the acceleration interpolation, since some shape functions
are used multiple times in a given acceleration interpolation.



This will serve to significantly reduce the total number of
shape function evaluations required each time step. Hand
vectorizing the interpolation functions can also be investi-
gated using a micro-benchmark.

Lastly we can try different field data storage strategies.
The original implementation used a structure of arrays
approach, it is possible that an array of structures approach
might be better.

Micro-benchmarks can be developed to test some of these
optimization ideas. One of the micro-benchmarks used for
this optimization phase was an AVX implementation of the
shape function calls for field to particle interpolation.

4) Hand Vectorization of Shape Functions.: During the
interpolation of field information to particles, the field values
at various mesh points are weighted using of specific shape
functions. The order of the shape functions used depends
on the location and component of the field value being
interpolated. In the case of a 2D3V problem first and second
order shape functions are used. These shape functions are
shown in Eq. 2 and 3 below, where x is the normalized
distance between a particle and a grid point.

S1(x) =

{
1− |x| for |x| ≤ 1

0 otherwise
(2)

S2(x) =


3
4 − |x|

2 for |x| ≤ 1
2

1
2

(
3
2 − |x|

)2
for 1

2 ≤ |x| ≤ 3
2

0 otherwise

(3)

The shape function micro benchmark involves computing
four S1 values and six S2 values, the same number of eval-
uations as in the 2D3V electromagnetic field interpolation.
These 10 evaluations are performed many times in order
to reduce variation in the results. Using the approach we
tested both double and single precision 256-bit AVX imple-
mentations of the shape function evaluations and compared
the run times to scalar versions. The single precision AVX
implementation was 2x faster than the scalar float version,
while the double precision AVX version was only 63% faster
than the scalar double version.

5) Results of Optimization Strategies: In the end, we
implemented three different optimizations, and analyzed
how they interact with each other in five different tests
(see Figure 10). The first test case (A), Opt=000, is the
baseline performance result. Case (B), Opt=100, consoli-
dates the shape function evaluations. Case (C), Opt=110,
both consolidates the shape function evaluations and stores
the electric and magnetic fields as an array of structures.
Case (D), Opt=001, includes hand vectorized routines.
Case (E), Opt=101, consolidates shape function evaluations,
and employs hand vectorized routines, including the hand-
vectorized shape function evaluations. The final case, case
(F), Opt=111, includes all of the optimizations.
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Figure 10. 2D3V Island Coalescence Equilibrium optimization results
(double precision).

As is shown in Figure 10, consolidating the shape function
evaluations reduces the cost of the acceleration interpolation
by nearly 2x. The exact cause of this speedup can be seen
in a Byfl analysis of the consolidation optimization. Prior
to the optimization, the acceleration interpolation comprised
1500 out of the total 2300 flops per subcycle. Consolidating
the shape function evaluations reduced that to 700 out of the
total 1500 flops per subcycle.

Storing the field data as an array of structures instead of
a structure of arrays also provided a sizable performance
boost. Hand vectorizing several additional functions did not
provide much of a performance boost in any given routine,
but together all three optimizations account for an overall
factor of 2x speedup for the double precision version of the
code.

IV. CONCLUSIONS

As computing platforms become increasingly heteroge-
neous new algorithms and applications are needed in or-
der to take advantage of these systems. Applications and
algorithms must adapt to the new architectures, while pro-
gramming models and abstractions must adapt to the new
applications and algorithms.

In this paper we described a co-design process used to
facilitate these adaptations through the use of new algo-
rithms, abstraction layers, and proxy-applications. We are
applying this process to multi-scale plasma kinetic simula-
tion. The hierarchical nature of the new HO-LO moment-
based implicit PIC algorithms developed for this simulation
maps well to the nature of the emerging architectures. Proxy
applications were used to develop and test the validity of the
new algorithm, as well as to develop new abstraction layers



for hiding problem dimensionality and architecture specific
implementations. We have demonstrated that a high degree
of performance can be achieved on multi-core systems with
the abstraction methods presented, and we do not foresee
these abstraction methods inhibiting performance on other
architectures. We also do not foresee scalabilty becoming
an issue simply due to the significant amount of work
performed per communication for our problems.

The next steps will be to develop and implement the
GPU and MIC components of the PlasmaApp framework.
Work is currently being done to develop the LO solver
components for both 1D3V and 2D3V electromagnetic prob-
lems. Mapped mesh support is also planned, and will be
implemented along with the GPU and MIC components.
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